Model performance
Driving model performance optimization: 2024 highlights
Baseten's model performance team works to optimize customer models for latency, throughput, quality, cost, features, and developer efficiency.
How we built production-ready speculative decoding with TensorRT-LLM
Our TensorRT-LLM Engine Builder now supports speculative decoding, which can improve LLM inference speeds.
Generally Available: The fastest, most accurate and cost-efficient Whisper transcription
At Baseten, we've built the most performant (1000x real-time factor), accurate, and cost-efficient speech-to-text pipeline for production AI audio transcription
How to build function calling and JSON mode for open-source and fine-tuned LLMs
Use a state machine to generate token masks for logit biasing to enable function calling and structured output at the model server level.
How to double tokens per second for Llama 3 with Medusa
We observe up to a 122% increase in tokens per second for Llama 3 after training custom Medusa heads and running the updated model with TensorRT-LLM
How to serve 10,000 fine-tuned LLMs from a single GPU
LoRA swapping with TRT-LLM supports in-flight batching and loads LoRA weights in 1-2 ms, enabling each request to hit a different fine-tune.
Benchmarking fast Mistral 7B inference
Running Mistral 7B in FP8 on H100 GPUs with TensorRT-LLM, we achieve best in class time to first token and tokens per second on independent benchmarks.
33% faster LLM inference with FP8 quantization
Quantizing open-source LLMs to FP8 resulted in near-zero perplexity gains and yielded material performance improvements across latency, throughput, and cost.
High performance ML inference with NVIDIA TensorRT
Use TensorRT to achieve 40% lower latency for SDXL and sub-200ms time to first token for Mixtral 8x7B on A100 and H100 GPUs.
40% faster Stable Diffusion XL inference with NVIDIA TensorRT
Using NVIDIA TensorRT to optimize each component of the SDXL pipeline, we improved SDXL inference latency by 40% and throughput by 70% on NVIDIA H100 GPUs.