Jina AI logoJina Embeddings V2 Base EN

A text embedding model with a context window of 8192 tokens and a dimensionality of 768 values.

Deploy Jina Embeddings V2 Base EN behind an API endpoint in seconds.

Deploy model

Example usage

This model takes a list of strings and returns a list of embeddings, where each embedding is a list of 768 floating-point number representing the semantic text embedding of the associated string.

Strings can be up to 8192 tokens (approximately 6000 words) in length, or shorter if max_tokens is set to a lesser value in the data dictionary.

Input
1import requests
2import os
3
4# Replace the empty string with your model id below
5model_id = ""
6baseten_api_key = os.environ["BASETEN_API_KEY"]
7
8data = {
9    "text": ["I want to eat pasta", "I want to eat pizza"],
10    "max_length": 8192
11}
12
13# Call model endpoint
14res = requests.post(
15    f"https://model-{model_id}.api.baseten.co/production/predict",
16    headers={"Authorization": f"Api-Key {baseten_api_key}"},
17    json=data
18)
19
20# Print the output of the model
21print(res.json())
JSON output
1[
2    [
3        0.2593194842338562,
4        "...",
5        -1.4059709310531616
6    ],
7    [
8        0.11028853803873062,
9        "...",
10        -0.9492666125297546
11    ]
12]

Deploy any model in just a few commands

Avoid getting tangled in complex deployment processes. Deploy best-in-class open-source models and take advantage of optimized serving for your own models.

$

truss init -- example stable-diffusion-2-1-base ./my-sd-truss

$

cd ./my-sd-truss

$

export BASETEN_API_KEY=MdNmOCXc.YBtEZD0WFOYKso2A6NEQkRqTe

$

truss push

INFO

Serializing Stable Diffusion 2.1 truss.

INFO

Making contact with Baseten 👋 👽

INFO

🚀 Uploading model to Baseten 🚀

Upload progress: 0% | | 0.00G/2.39G