Llama 11B Vision

Meta logoLlama 3.2 11B Vision Instruct

A vision-capable chat LLM from Meta

Deploy Llama 3.2 11B Vision Instruct behind an API endpoint in seconds.

Deploy model

Example usage

Llama 3.2 Vision Instruct uses the same messages format as other Llama models, but with a new image field. Note that while multi-turn conversations are supported, the model can only process one image per generation, which is supplied at the end of the array.

Input
1import requests
2
3# Replace the empty string with your model id below
4model_id = ""
5baseten_api_key = os.environ["BASETEN_API_KEY"]
6
7messages = [
8    {"role": "user", "content": [
9        {"type": "image"},
10        {"type": "text", "text": "Can you write a haiku about this image?"}
11    ]},
12]
13image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
14data = {
15    "messages": messages,
16    "image": image,
17    "stream": True,
18    "max_new_tokens": 512,
19    "temperature": 0.9
20}
21
22# Call model endpoint
23res = requests.post(
24    f"https://model-{model_id}.api.baseten.co/production/predict",
25    headers={"Authorization": f"Api-Key {baseten_api_key}"},
26    json=data,
27    stream=True
28)
29
30# Print the generated tokens as they get streamed
31for content in res.iter_content():
32    print(content.decode("utf-8"), end="", flush=True)
JSON output
1{
2    "id": "chat-b1e89c98a7294d9dbb9d5e7867d2cb7c",
3    "object": "chat.completion",
4    "created": 1727839150,
5    "model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
6    "choices": [
7        {
8            "index": 0,
9            "message": {
10                "role": "assistant",
11                "content": "This image is a close-up photograph of a black Labrador puppy with floppy ears and a shiny, healthy coat, gazing up at the camera with large brown eyes.",
12                "tool_calls": []
13            },
14            "logprobs": null,
15            "finish_reason": "stop",
16            "stop_reason": null
17        }
18    ],
19    "usage": {
20        "prompt_tokens": 18,
21        "total_tokens": 52,
22        "completion_tokens": 34
23    },
24    "prompt_logprobs": null
25}

Deploy any model in just a few commands

Avoid getting tangled in complex deployment processes. Deploy best-in-class open-source models and take advantage of optimized serving for your own models.

$

truss init -- example stable-diffusion-2-1-base ./my-sd-truss

$

cd ./my-sd-truss

$

export BASETEN_API_KEY=MdNmOCXc.YBtEZD0WFOYKso2A6NEQkRqTe

$

truss push

INFO

Serializing Stable Diffusion 2.1 truss.

INFO

Making contact with Baseten 👋 👽

INFO

🚀 Uploading model to Baseten 🚀

Upload progress: 0% | | 0.00G/2.39G