Prompt: A movie still of a squirrel in a forest green ski suit

Nomic AI logoNomic Embed Code

SOTA text embedding model built for code.

Deploy Nomic Embed Code behind an API endpoint in seconds.

Example usage

nomic-ai/nomic-embed-code is a text-embeddings model, producing a 1D embeddings vector, given an input. It's frequently used for downstream tasks like clustering, used with vector databases.

Input
1from openai import OpenAI
2import os
3
4client = OpenAI(
5    api_key=os.environ['BASETEN_API_KEY'],
6    base_url="https://model-xxxxxx.api.baseten.co/environments/production/sync/v1"
7)
8
9embedding = client.embeddings.create(
10    input="Baseten Embeddings are fast",
11    model="model"
12)
JSON output
1{
2    "data": [
3        {
4            "embedding": [
5                0
6            ],
7            "index": 0,
8            "object": "embedding"
9        }
10    ],
11    "model": "thenlper/gte-base",
12    "object": "list",
13    "usage": {
14        "prompt_tokens": 512,
15        "total_tokens": 512
16    }
17}

Deploy any model in just a few commands

Avoid getting tangled in complex deployment processes. Deploy best-in-class open-source models and take advantage of optimized serving for your own models.

$

truss init -- example stable-diffusion-2-1-base ./my-sd-truss

$

cd ./my-sd-truss

$

export BASETEN_API_KEY=MdNmOCXc.YBtEZD0WFOYKso2A6NEQkRqTe

$

truss push

INFO

Serializing Stable Diffusion 2.1 truss.

INFO

Making contact with Baseten 👋 👽

INFO

🚀 Uploading model to Baseten 🚀

Upload progress: 0% | | 0.00G/2.39G