Phi 3.5 Mini Instruct
A highly capable lightweight LLM from Microsoft
Deploy Phi 3.5 Mini Instruct behind an API endpoint in seconds.
Deploy modelExample usage
Phi 3.5 uses the standard set of LLM parameters and has optional streaming output.
Input
1import requests
2import os
3
4# Replace the empty string with your model id below
5model_id = ""
6baseten_api_key = os.environ["BASETEN_API_KEY"]
7
8messages = [
9 {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
10 {"role": "user", "content": "Who are you?"},
11]
12data = {
13 "messages": messages,
14 "stream": True,
15 "temperature": 0.5
16}
17
18# Call model endpoint
19res = requests.post(
20 f"https://model-{model_id}.api.baseten.co/production/predict",
21 headers={"Authorization": f"Api-Key {baseten_api_key}"},
22 json=data,
23 stream=True
24)
25
26# Print the generated tokens as they get streamed
27for content in res.iter_content():
28 print(content.decode("utf-8"), end="", flush=True)
JSON output
1[
2 "arrrg",
3 "me hearty",
4 "I",
5 "be",
6 "doing",
7 "..."
8]