Qwen VL

Qwen LogoQwen VL

A large vision language model made by Alibaba cloud

Deploy Qwen VL behind an API endpoint in seconds.

Deploy model

Example usage

The model requires two inputs:

  • prompt: The instruction given to the model to extract info from the image

  • image: The input image in the form of a base64 string

Input
1import requests
2import base64
3from PIL import Image
4from io import BytesIO
5
6# Place model id below
7model_id = ""
8baseten_api_key = os.environ["BASETEN_API_KEY"]
9
10def pil_to_b64(pil_img):
11    buffered = BytesIO()
12    pil_img.save(buffered, format="PNG")
13    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
14    return img_str
15
16
17data = {
18  "image": pil_to_b64(Image.open("/path/to/image/dog.jpg")),
19  "prompt": "Generate the caption in English with grounding"
20}
21
22# Call model endpoint
23res = requests.post(
24    f"https://model-{model_id}.api.baseten.co/production/predict",
25    headers={"Authorization": f"Api-Key {baseten_api_key}"},
26    json=data
27)
28
29print(res.json())
JSON output
1{
2    "output": "Picture 1: <img>/tmp/tmpw6m_zmbk.png</img>\nGenerate the caption in English with grounding<ref> A maltese dog</ref><box>(385,361),(783,934)</box> in a flower garden<|endoftext|>"
3}

Deploy any model in just a few commands

Avoid getting tangled in complex deployment processes. Deploy best-in-class open-source models and take advantage of optimized serving for your own models.

$

truss init -- example stable-diffusion-2-1-base ./my-sd-truss

$

cd ./my-sd-truss

$

export BASETEN_API_KEY=MdNmOCXc.YBtEZD0WFOYKso2A6NEQkRqTe

$

truss push

INFO

Serializing Stable Diffusion 2.1 truss.

INFO

Making contact with Baseten 👋 👽

INFO

🚀 Uploading model to Baseten 🚀

Upload progress: 0% | | 0.00G/2.39G