Allen AITulu 3 8B Reward

A reward model based on Llama 3.1 8B

Deploy Tulu 3 8B Reward behind an API endpoint in seconds.

Example usage

allenai/Llama-3.1-Tulu-3-8B-RM is a text-classification model, used to classify a text into a category.

It is frequently used in sentiment analysis, spam detection, and more. It's also used for deployment of chat rating models, e.g. RLHF reward models or toxicity detection models.

Input
1import requests
2import os
3
4headers = {
5    f"Authorization": f"Api-Key {os.environ['BASETEN_API_KEY']}"
6}
7
8requests.post(
9    headers=headers,
10    url="https://model-xxxxxx.api.baseten.co/environments/production/sync/predict",
11    json={
12        "inputs": [["Baseten is a fast inference provider"], ["classify this separately."]],
13        "raw_scores": True,
14        "truncate": True,
15        "truncation_direction": "Right"
16    }
17)
JSON output
1[
2    [
3        {
4            "label": "excitement",
5            "score": 0.99
6        }
7    ],
8    [
9        {
10            "label": "excitement",
11            "score": 0.01
12        }
13    ]
14]

Deploy any model in just a few commands

Avoid getting tangled in complex deployment processes. Deploy best-in-class open-source models and take advantage of optimized serving for your own models.

$

truss init -- example stable-diffusion-2-1-base ./my-sd-truss

$

cd ./my-sd-truss

$

export BASETEN_API_KEY=MdNmOCXc.YBtEZD0WFOYKso2A6NEQkRqTe

$

truss push

INFO

Serializing Stable Diffusion 2.1 truss.

INFO

Making contact with Baseten 👋 👽

INFO

🚀 Uploading model to Baseten 🚀

Upload progress: 0% | | 0.00G/2.39G